
In the forward engineering approach to optimizing biological systems, diversity generation is followed by 
a combinatorial optimization phase. The process involves the discovery of single edit hit variants from the 
diversity generation phase and partnering them in novel configurations through combinatorial libraries.

But creating combinatorial libraries is not always straightforward. A key challenge is identifying the best 
way to generate libraries and to search through them quickly to identify improved performance variants.
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How Combinatorial Optimization Enables 
Rapid Discovery of High-Performance 
Variants 

Figure 1: Combinatorial libraries (right) allow for important optimization of biological variant performance, significantly improving 
on the gains obtained from in single-variant libraries (left). Each line represents a single genetic sequence in a population of 
related variants, where dots represent mutations.

A research approach from the mid-’90s focused on recombination at a sub-genomic scale, using DNA 
shuffling as one mechanism for achieving high yield variation. The method involved selecting a set of 
related gene variants and shuffling them together in a hypersexual way to recombine fragments of 
different genetic material from various parent sequences to produce a progeny population for screening. 
Repeating this process through several rounds of shuffling and screening can simultaneously weed out and 
accumulate diversity that is detrimental or beneficial to the trait of interest and produce novel variants with 
improved capabilities. This process of DNA shuffling is comparable to decades-old computational methods 
employing evolutionary algorithms for in silico optimization problems. 

In the wet lab context, asexual DNA mutagenesis involves introducing mutations in parental sequences to 
generate diversity and using high-throughput phenotyping to select an optimal strain that serves as the 
input for the next round of mutagenesis. Although asexual approaches work, they fail to take advantage of 
a wealth of available beneficial genetic diversity in the rest of the population that can be recombined and 
shuffled to create variants with improved function.
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A combinatorial optimization strategy that leverages existing beneficial diversity facilitates a more rapid 
exploration of sequence space compared to asexual approaches. The benefits of such a strategy were 
demonstrated in an experiment where a starting strain that produced a molecule of interest was subjected 
to 20 years of classical mutagenesis, effectively asexual reproduction, to obtain higher-yield progeny 
strains. Although the program resulted in high titer mutants, the approach consumed many years and 
resources. Alternatively, by adopting an approach consisting of an initial diversity generation phase 
followed by only two rounds of recombination of beneficial mutations from across the genomes of several 
individually improved strain variants, a new production strain comparable to the one obtained from the 20-
year process was delivered in a single year and with significantly fewer resources. The use of more recently 
developed genome engineering methods on a strain engineering project of this kind can reduce the time 
and resource requirements even further (1). 

The Importance of Fuel and Speed for Evolution 

In many experiments, the desired combinations of mutations that yield the most optimal results are quite 
rare. Given a complex combinatorial library, strategies that focus on deep screening tend to offer minimal 
return on investment. Once the first few hundred or few thousand variants have been sampled, a deep 
screening approach will return very few improved variants from the population (over what has already 
been discovered) and will almost certainly fail to explore all possible variation, including the most optimal 
variants. A more effective strategy is to screen fewer variants from these libraries, select the best ones, and 
then recombine them to create novel genetic configurations that further improve performance. Repeating 
this process over several rounds ultimately homes in on many of the rarer configurations of beneficial 
mutations that the deep screening approach is likely to miss. 

Operational speed and large reserves of genetic fuel for evolution are two key parameters that govern 
fitness gains in performance over repeated rounds of combinatorial optimization. After multiple rounds 
of evolution, the phenotypic variance in the population starts to drop off as the genotypic variance is 
purified out. This results in less diversity with each generation and affects the ability to gain greater fitness 
with continued rounds of recombination. Avoiding this issue requires stockpiling large quantities of starting 
beneficial diversity. This provides more evolutionary fuel for the combinatorial optimization step and 
profoundly improves performance over successive rounds of evolution. 

Figure 2: Slower strategies sacrifice rateof performance gains, while faster versions – even imperfect ones – consistently perform 
better.
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Additionally, it is important to avoid strategies that improve the fitness gain per round at the expense 
of operational speed. In both diversity generation and combinatorial optimization, stochastic library 
generation wins out over slow, laborious, and expensive defined variant construction approaches. Even 
though stochastic libraries are not perfect in their representation of different mutations, they are very robust 
and fast to create and phenotype — making them a far more efficient use of resources.  

Machine Learning-Guided Models for Improved Optimization

Combinatorial optimization produces valuable diversity by selecting the best options and randomly 
recombining their genetic material. Approaches guided by machine learning can be used to speed up the 
process by mining sequence data to establish genotype-phenotype relationships, and then constructing in 
silico models that guide future rounds of evolution. 

An optimization experiment to improve the catalytic performance of an enzyme offers a representative 
example of using machine learning in this way(2). The experiment began with a diversity generation step 
using the wild type enzyme. This resulted in 171 beneficial mutations as potential inputs for the optimization 
procedure. The best mutations from the diversity generation round were selected and then screened using 
a combinatorial library of several thousand variants. The genotype-phenotype information from this set of 
mutations was used to build a statistical model that could infer from sequence data which mutations were 
beneficial, neutral, or deleterious for the property of interest. The best variant from the second round served 
as the input for generating the library that was used in the third round.

In this project, researchers used the statistical model to make additional changes to the variant, including 
18 mutations from diversity stockpiled in the first round. They then screened the library to identify new hits. 
The outcome from the third round was a variant that showed two orders of magnitude improvement 
compared to the starting enzyme.

In the first large scale example of this method(3), researchers used machine learning guided evolution 
to create an enzyme that showed a 4,000-fold improvement in volumetric productivity over the starting 
material. The final production variant had 51 codon changes, nearly 40 of which were coding variants. 
It is important to note that these beneficial mutations were discovered across the enzyme. By way of 
comparison, the researchers also performed classical DNA shuffling in parallel to the machine learning 
approach. Comparing the results of the two indicated that in 14 out of the first 15 rounds of evolution, the 
machine learning approach outperformed  the DNA shuffling approach at discovering improved variants. 
The team also found that many of the beneficial mutations identified through the statistical model would 
have been missed by traditional DNA shuffling since they were not present in the top variants the first time 
they appeared.
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Summary 

Recombination is an extremely powerful tool for optimization. It facilitates the rapid accumulation of 
beneficial diversity and achieves much higher fitness levels faster than standard asexual or rational 
engineering methods. Making the most of a combinatorial optimization program requires the design 
of large, stochastic libraries where theoretical sizes exceed the traditional capacity to generate and test 
variants. Combinatorial optimization is most efficient when coupled with shallow sampling of these large 
libraries and with iterative Design-Generate-Test-Learn (DGTL) rounds for achieving the largest gains in 
performance most rapidly. When the empirical approach is paired with machine learning models, the 
process of identifying optimal variants becomes even faster. 
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